Hongyi Chen

	Hongyi Chen	
	Homepage:https://hychen-naza.github.io/	Email: hongyic@andrew.cmu.edu
Research Interests	Robotics and Dexterous Manipulation: Bridge learning and control theory to create robust and efficient solutions for greater scopes of dexterous, contact-rich manipulation tasks.	
EDUCATION	Carnegie Mellon University, 2nd year Ph.D in Robotics; May 2028 (Expected)	
	Georgia Institute of Technology, M.S in Robotics; May 2023	
	Carnegie Mellon University, M.S in Electrical and Computer Engineering; May 2021	
	Peking University, B.A in Economics; June 2019	
	Beijing University of Chemical Technology (BUCT), B.S in A	Applied Mathematics; June 2018
SELECTED PUBLICATIONS	 Hongyi Chen, Abulikemu Abuduweili, Aviral Agrawal, Y Jeffrey Ichnowski. KOROL: Learning Visualizable O for Manipulation. <i>8th Annual Conference on Robot Lea</i> Hongyi Chen, Yunchao Yao, Ruixuan Liu, Changliu Liu 	bject Feature with Koopman Operator Rollour arning (CoRL), 2024. [PDF]
	Recovery Using Vision-Language Models With Optim Conference (ACC), 2025. [PDF]	ized Prompts. Submitted to American Control
	[3] Hongyi Chen, Yilun Du, Yiye Chen, Patricio A. Vela, Joshua B. Tenenbaum. Planning with Language Models through Iterative Energy Minimization. In: <i>The International Conference on Learning Repre-</i> <i>sentations (ICLR)</i> , 2023. [PDF]	
	[4] Ruinian Xu, Hongyi Chen, Yunzhi Lin and Patricio A. Vela. SGL: Symbolic Goal Learning for Human Instruction Following in Robot Manipulation. <i>Robotics and Automation Letters (RA-L) with the IROS</i> option, 7(4):10375–10382. 2022 [PDF]	
	[5] Hongyi Chen, Changliu Liu. Safe and Sample efficient Reinforcement Learning for Clustered Dynamic Uncertain Environments. <i>IEEE Control System Letters (L-CSS)</i> , 6:1928–1933. 2021 [PDF]	
Robot Manipulation Research Experience	 Carnegie Mellon University, Pittsburgh, PA Advisor: <i>Jeffrey Ichnowski</i> and <i>Zackory Erickson</i>, Robotics Ins Proposed KOROL, which learns flexible visual features for ually defined object states, and demonstrated that KORO Koopman dynamics based on ground-truth states. Deployed KOROL to learn linear dynamics for force-awar 	Koopman dynamics without the need to man- L, using learned object features, outperforms e human body contact using a soft hand, opti-
	mizing contact poses to achieve desired forces through MPC.Investigated how optimizing visual and text prompts can enhance the spatial reasoning of VLMs, enabling them to function effectively as black-box controllers for both motion-level position correction and task-level recovery from unknown failures.	
Robot	Massachusetts Institute of Technology, Cambridge, MA	Jun 2022 – Sep 2022
PLANNING & LEARNING	 Advisor: <i>Joshua B. Tenenbaum</i>, Department of Brain and Cognitive Sciences Proposed an iterative planning approach with masked language models through energy minimization, showcasing unique benefits like task generalization and plan composition. 	
RESEARCH Experience	Georgia Institute of Technology, Atlanta, GA Advisor: <i>Patricio A. Vela</i> , School of Electrical and Computer F Advisor: <i>Danfei Xu</i> , School of Interactive Computing	Dec 2021 – May 2023
	 Developed a hybrid planner combining symbolic and neural methods for parsing human instructions and task planning, alongside a semantic graph neural network for guided object search in home-assistant robots. Deployed the instruction-following pipeline on AI2THOR simulator and physical Stretch robot. 	
	Carnegie Mellon University, Pittsburgh, PA Advisor: <i>Changliu Liu</i> , Robotics Institute	Jan 2021 – May 2022
	• Applied safe control theory with reinforcement learning (RL) to navigate crowded, dynamic, and uncertain environments, ensuring theoretical safety guarantees and achieving a significantly higher probability of collision-free navigation.	
Skills	Programming : Python, Pytorch, C/C++, CUDA	

SKILLS **Programming**: Python, Pytorch, C/C++, CUDA