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Abstract: Deep convolutional neural networks (CNN) have been recently applied to synthetic
aperture radar (SAR) for automatic target recognition (ATR) and have achieved state-of-the-art results
with significantly improved recognition performance. However, the training period of deep CNN is
long, and the size of the network is huge, sometimes reaching hundreds of megabytes. These two
factors of deep CNN hinders its practical implementation and deployment in real-time SAR platforms
that are typically resource-constrained. To address this challenge, this paper presents three strategies
of network compression and acceleration to decrease computing and memory resource dependencies
while maintaining a competitive accuracy. First, we introduce a new weight-based network pruning
and adaptive architecture squeezing method to reduce the network storage and the time of inference
and training process, meanwhile maintain a balance between compression ratio and classification
accuracy. Then we employ weight quantization and coding to compress the network storage space.
Due to the fact that the amount of calculation is mainly reflected in the convolution layer, a fast
approach for pruned convolutional layers is proposed to reduce the number of multiplication by
exploiting the sparsity in the activation inputs and weights. Experimental results show that the
convolutional neural networks for SAR-ATR can be compressed by 40× without loss of accuracy,
and the number of multiplication can be reduced by 15×. Combining these strategies, we can easily
load the network in resource-constrained platforms, speed up the inference process to get the results
in real-time or even retrain a more suitable network with new image data in a specific situation.

Keywords: deep learning; synthetic aperture radar (SAR); automatic target recognition (ATR); model
compression; fast algorithm

1. Introduction

Synthetic aperture radar (SAR) imaging is an all-day, all-weather, high-resolution and
wide-coverage remote sensing technology. With the evolution of SAR technologies, massive
SAR images with abundant characteristics (e.g., high resolution, multi-aspect, multi-dimension,
multi-polarization) have been provided for important applications in geo-graphical survey, climate
change research, environment, Earth system monitoring and so on [1,2]. Due to the complex
scattering mechanisms, geometric distortions and speckle noises in SAR image, the interpretation
and understanding of SAR images are much different from optical image analysis. The intelligent
processing of signal and information has created huge demands in practical electronic intelligence
systems [3–5]. Accordingly, to bridge the SAR systems and their applications, SAR image automatic
interpretation, especially automatic target recognition (ATR), has become an important research topic
in surveillance, military tasks, etc., and has been studied continuously for more than 20 years [6].
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The MIT Lincoln Laboratory proposed a standard architecture of SAR ATR, which contains
three stage: detection, discrimination, and classification [7,8]. Detection is to extract candidate target
region from SAR images. Essentially, it is a binary classification problem to determine the target and
background. The output might include not only the targets of interests such as tanks, armored vehicles,
and missile launchers, but also the false alarm clutter such as trees, buildings, bridges, and cars.
At the discrimination stage, in order to eliminate false alarms, several features are selected to train a
discriminator to solve the two-class (target and clutter) problem [9]. Finally, the classifier is used to
categorize each input sample to a specific target type. On the final classification stage, there are four
mainstream paradigms: template matching, model-based methods, neural networks, and machine
learning [8,10–16]. Recently, the emerging deep learning methods demonstrate their excellent target
feature extraction and recognition capability in natural and optical imagery, which has motivated
many researchers to study convolutional neural networks (CNN) [17], deep convolutional autoencoder
(CAE) [18], deep belief network (DBN) [19], and restricted Boltzmann machine (RBM) [20] in SAR
image classification and target recognition issues.

At the beginning of deep learning research for SAR ATR, the recognition performance
improvement is the main objective of method innovation. Due to limited training samples, the SAR
ATR networks are usually more shallower than the natural image recognition case. As for the type
identification, both shallow CAE and CNN are employed to conduct MSTAR and TerraSAR-X data
recognition with sparsely connected convolution architectures and fine-tuning strategies, and achieve
high recognition accuracy over 98% [17,21,22]. Lately, various handcrafted features combined with
deep learning for precise recognition, like multi-aspect scattering feature, texture feature and so
on. Except for the CNN framework, the bidirectional LSTM (Long Short-Term Memory) networks
and multi-channel CNN networks are introduced to learn the multi-aspect scattering features of
targets [23,24]. Compared with existing single aspect scattering feature learning methods, these two
methods can achieve the more robust and precise recognition.

Although being powerful in segmentation, detection and classification, CNN as a supervised
discriminative network is highly sensitive to the selection and size of training samples and thus it is
susceptible to the overfitting problems, which is known as data dependency issue [25–27]. The most
straightforward idea is to generate artificial target images under different conditions augment training
data set and thus generalize the discriminative model. Based on this idea, Generative Adversarial
Networks (GANs) have been introduced to generate simulated massive image samples based on
limited training images [28,29]. Similarly, the transfer learning methods are employed to solve the
limited data sample problem by transferring the knowledge learned from unlabeled sample to the
labeled target data in an assembled CNN architecture [30]. Meanwhile, some improved deep neural
network frameworks are proposed to adapt to limited sample learning or zero-shot learning [25,31].
Through the recent small sample oriented SAR-ATR research, the data dependency of deep neural
network can be greatly reduced, which improves the applicability of the deep ATR networks.

In practical ATR applications, the resources of a data processing platform including power
consumption, computation and storage are always very expensive and limited. In the field of general
deep learning, how to maintain recognition accuracy while reducing resource requirements has become
a hot topic in the past few years. To achieve a high classification accuracy, researchers have built
deeper and larger convolutional neural networks and have to train them on large computer clusters
with high-performance graphics cards, e.g., the power-consuming VGG-16 model is over 500 MB
and requires hours or even days to finish training. On the other hand, there is a growing demand to
deploy the SAR ATR algorithms in mobile and low-power platforms to realize realtime processing,
e.g., airborne SAR and spaceborne SAR platforms. Such applications depend on the local trained
deep neural network, and require model to learn high-level features quickly and energy-efficiently.
Regardless of computing power, power consumption, and storage, the performance of mobile platform
is much lower than that of computing servers. Therefore, there is a great demand for the solution
that can greatly reduce the training time, inference time, storage size and power consumption of deep
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neural network. These computing, memory and power resources are dominated by the number of total
multiplications and memory access of network weights. So, efficient computation and compression
algorithms for deep neural networks are being studied extensively in both academia and industry.

To solve the problem of large model size, Songhan proposed two kinds of compression method:
SqueezeNet [32] and Deep Compression [33], which include pruning, quantization and Huffman
coding methods. These methods achieve a high compression ratio in AlexNet, VGG-16 and LeNet-5
and make it possible to fit them in on-chip SRAM cache. However, Deep Compression discussed in
Songhan’s work mainly focused on compression rather than acceleration which is also important for
real-time image processing. Moreover, AlexNet, VGG-16 and LeNet-5 are over-parameters which
possess millions amount of parameters in their fully connected layers. While the networks designed
for SAR-ATR are mainly consisted of convolutional layers which have much fewer parameters than
fully connected layers and more sensitive to pruning, the method in Deep Compression is likely to
harm the performance of these networks. Besides, the SqueezeNet squeezes network through trial
and error, and does not quantify the squeezing ratio. In our paper, we propose to use pruning to give
a quantified squeezing ratio and then carefully combine two compression method to achieve a high
compression ratio in CNN. Many other compression works like HashedNets (Chen et al., 2015) [34]
reduce model sizes by using a hash function to randomly group connection weights, so that all
connections within the same hash bucket share a single parameter value. Gong et al. (2014) [35]
compressed deep convolutional networks using vector quantization. Both methods studied only
the fully connected layer and ignored the convolutional layers, while our work mainly focus on the
compression of convolutional layer.

In addition to compressing the networks, there is also a practical need for reducing the
computational workload. Xingyu Liu et al. (2018) [36] suggest that pruning the weight matrix and
exploiting the dynamic sparsity of activations can reduce multiplication count in forward propagation.
However, such method still needs to perform O(N) in selection to find out non-zero values at each
convolution computation, which is quiet wasteful, and thus leading to no training time saving. In order
to speed up the basic process step, we propose a novel computation method based on sparsity to save
a significant amount of time in selection. Although there have been various deep learning based SAR
ATR methods to focus on improving the accuracy, seldom studies have discussed the deep network
compression while maintaining competitive accuracy. Compared to the past works, we make the
following contributions in this paper:

• We introduce a quantified squeezing method based on pruning, which can find the appropriate
squeezing ratio quickly for a sensitive convolutional neural network.

• We propose a novel fast convolution computation method for pruned convolutional neural
network that can be applied during training and inference process, which can save a significant
amount of computation and training time.

• We design a resource-constrained environment oriented CNN for SAR ATR using the pruning,
compression and the fast convolution computation to achieve a high compression ratio efficiently
while maintaining the considerable accuracy. (The whole process is shown in Figure 1)

The rest of this paper is organized as follows. Section 2 explains the details of our compression
method and fast algorithm. Then experimental statistics and analysis are presented in Section 3.
Finally our conclusions are drawn in Section 4.
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Figure 1. The two state compression and acceleration pipeline.

2. The Proposed Method

Recent research on CNN-based SAR ATR has focused on the accuracy improvement. Due to the
deep neural network model and large amount of convolution calculations, it is difficult to deploy the
ATR networks on mobile platform with limited hardware resources. The need for real-time target
recognition will be hindered, thus limiting the ATR applications. However, the compression of deep
neural networks is the most straightforward solution for the case. The network pruning method is a
classical way to reduce the model size in that certain weights in each layer are too small to contribute to
the feature transmission. Similarly, the cropping of convolution kernel, namely the squeezing method,
will greatly reduce the number of model parameters. Moreover, the ATR problem is essentially a
qualitative determination of the target category. In the sense, the representation of model does not
have to be as high precision. After those structural level compression, the quantization and coding
will be applied for further compression.

2.1. Quantified Microarchitecture Squeezing Method

We know that for a given accuracy level, there are multiple CNN architectures that can achieve
that accuracy. However, the problem of identifying a slimmer CNN architecture is challenging. Recent
works squeeze the architecture through a few basic guidelines or principles such as decreasing the
number of input channels, but none of them quantify the squeezing ratio.

Here, we deploy the network pruning method to help us squeeze CNN architecture rather than
trial and error. Network pruning is proved to be a efficient way to reduce the network complexity
in early work [37]. All connections with weights below a threshold are removed from the network
and neurons with zero input connections or zero output connections will also be pruned, as shown in
Figure 2.

Based on network pruning, we define pruning ratio: ratiop and squeezing ratio: ratios in each
layer as follows:

ratiop =
the number o f pruned weights
the number o f original weights

(1)

ratios =
the number o f squeezed weights
the number o f original weights

(2)

We start training the network and then pruning the weight matrix in each layer without causing
accuracy loss. According to the pruning ratio in each layer, we can measure the redundancy of each
layer and squeeze those layers that have a large pruning ratio and redundancy. Because pruning
only impacts the computation in one specific layer but squeezing will change the size of output and
computation in the next layer, we should be careful when doing squeezing and choose a smaller
squeezing ratio than the pruning ratio. Moreover, we do not squeeze the kernel size in small networks,
e.g., squeezing a 3 × 3 kernel to a 1 × 1 kernel, since it is too aggressive and will cause great accuracy
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loss if only small-scale redundancies exist in the weight matrix. Instead, we reduce the number of
channels in convolutional kernels or the number of hidden units in fully connected layers according to
the squeezing ratio.

Figure 2. Connections and neurons before and after pruning.

Finding the slim architecture could be an iterative process. Each iteration consists of a network
retraining process followed by a network squeezing process. In first iteration, we can employ an
aggressive squeezing strategy because the original network has the most significant redundancies.
After first time iteration, the new and squeezed network needs to be retrained until it reaches the same
accuracy level as the original network. If the accuracy of squeezed network drops a lot, we should
reduce the squeezing ratio. Although the new network becomes much more sensitive to pruning and
squeezing, we may do gentle pruning and squeezing to it. We will end the iterative process until the
pruning ratio is small since it shows that the redundancy is small and keep squeezing the network is
likely to hurt the performance.

Suppose we do iterative squeezing in a 5 × 5 × 32 convolutional kernel. In first iteration, 60% of
weights in the kernel are pruned without accuracy loss, then we may squeeze it to a 5 × 5 × 16 one.
Here the pruning ratio is 60% and the squeezing ratio is only 50%. In second iteration, we pruned 30%
of weights and squeeze 25% of the kernel to a 5 × 5 × 12. In third iteration, we can only prune 10% of
weights and will stop squeezing since the pruning ratio is too small. The process is shown in Figure 3.

Figure 3. Iterative squeezing of convolutional kernel.

2.2. Fast Algorithm for Pruned Network

After the pruning and squeezing process, we obtain a pruned network with a small pruning ratio.
Like the example in Figure 3, the kernel will be squeezed untile the pruning ratio is small enough. In the
end, the squeezed kernel has only 10% weights pruned. So, the weight matrix in each convolutional
layer of the network is not sparse enough to be stored in compressed sparse row (CSR) or compressed
sparse columns (CSC) format. Here, we propose a new convolutional computation method to exploit
the light-degree sparsity of pruned weights and activation input. Typically, a 2D-convolutional layer
performs the computation as follows:
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Zm,n = ReLU(
f

∑
i=1

f

∑
j=1

wi,j Ai+m,j+n + b) (3)

where ReLU(·) (Rectified Linear Unit) indicates the commonly used activation function, w is the weight
matrix with dimension f × f , i represents the row number of w, j represents the column number of
w, A is the input feature map, b is the bias, Z indicates the output feature map, m represents the row
number of Z, n represents the column number of Z.

We perform the multiplication only for non-zero wij and elements Ai+m,j+n. To fully exploit the
sparsity of the activation input, we first store the non-zero values and indexes of each Ai+m,j+n in
dictionaries. It is a single-time cost computation and we do not need to pick out non-zero values
Ai+m,j+n in future computation any more. The detail of the computation approach is shown in
Figure 4. Here, the size of kernel is 2 × 2, so we partition the activation input into 4 groups and
store the non-zero values in each group. Then, we calculate each non-zero weights, that is w11 and
w22, and their corresponding non-zero input values. At last, we will add up the results of these two
groups according to the index of each result. The results with same index in different group will be
added together.

Figure 4. Fast algorithm for pruned convolutional layers.

2.3. Weight Sharing and Quantization

Weight sharing is a common technique used to compress the network and reduce the number
of bits needed to store for every weight. According to the weight sharing method discussed in Deep
Compression, we adopt k-means weight sharing algorithm and take linear initialization between
[min, max] of the pruned weights, which helps to maintain the large weights. Then suppose that we
can use k cluster indexes to represent n weights, we only need log2(k) bits to encode every cluster index.
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Another thing we should notice is that our CPU does not allocate space in individual bits, but in
bytes. Typically on a 32-bit processor, the compiler will allocate memory size as S = 4 × N + 31

32 ,
where N is the bits sizes and S is the byte sizes. So we cannot store cluster indexes separately which
will cause memory wasted, instead we should store all indexes together.The details of the algorithms
is illustrated in Figure 5.

Figure 5. Weight sharing and quantization in pruned weight matrix.

Commonly, we use 4 bytes to store each weight, then the compression ratio can be calculated as:

r =
4 ∗ n

4 ∗ (n log2(k)+31)
32 + 4 ∗ k

(4)

In Figure 5, we have a layer that has 4 input neurons and 4 output neurons, the weight is a 4 × 4
matrix, some weights in the matrix are pruned to zero. In weight sharing, the weights are clustered to
4 bins (denoted with 4 colors), and all the weights in the same bin share the same cluster index and
cluster center. Each cluster index is represented with 2 bits. The compression ratio is:

r =
4 ∗ 16

4 ∗ (16∗log2(4)+31)
32 + 4 ∗ 4

= 2.68 (5)

2.4. Huffman Coding

The occurrence probability of each weight index is different, especially in the pruned layer.
In pruned layers, the remained zero weights and weights with small absolute value can be easily
clustered into one bin. Figure 6 shows the count of weight indexes in conv4 layer. It shows that large
number of quantized weights are distributed around the mid-value, which is close to zero.
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Figure 6. Distribution of cluster indexes in conv4 layer.

By adopting the Huffman coding which is an optimal prefix code used for lossless data
compression, we can exploit the biased weights distributions and further compress the storage.
More common weight indexes are represented with shorter coding and fewer bits. The experiment
shows that the Huffman coding can save another 10% of weights storage.

3. Experimental Result

3.1. Dataset and Image Preprocessing

We implement training, network squeezing, pruning, weights sharing and Huffman coding
with Python and Tensorflow framework. Tensorflow is a multi-language neural network library
and runs on various heterogeneous systems, ranging from mobile devices to distributed graphics
processing unit (GPU) cluster. As to hardware environment, a work-station with two Intel Xeon
E5-2683 CPUs and one NVIDIA Geforce GTX1080 Ti GPU is employed as the training and testing
platform. The experiment data used in this paper were collected by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) Moving and Stationary
Target Acquisition and Recognition (MSTAR) program. In SAR ATR community, the MSTAR image
data is almost the only public dataset for the ATR algorithms research and evaluation [6]. Hundreds of
thousands of SAR images containing ground targets were collected, including different target types,
aspect angles, depression angles, serial number, and articulation, and only a small subset of which
are publicly available on the website [6]. The dataset consists of X-band SAR images with 1 foot by
1 foot resolution and 0∼360◦ aspect coverage, which contains ten types of vehicle targets, as shown in
Figure 7. Due to the appearance geometric similarity, complex backscattering and aspect sensitivity,
it is difficult to discriminate a vehicle sample in a single image split. For example, T72, BMP2 and
BTR70 are highly confusing in that they have similar appearance like gun barrel and crawler.

Generally, the SAR ATR algorithms will be evaluated in the Standard Operating Condition (SOC)
and the Extended Operating Condition (EOC) [38]. The SOC experiment is defined as the set of testing
conditions “very near” training conditions. The EOC experiments are defined to individually measure
SAR ATR extensibility across EOCs: configuration, target versions, depression, number of classes,
squint, aspect, serial number (SN) and so on. Different from the recognition performance oriented
ATR, the deep neural networks compression-based ATR aims to reduce the computation and memory
of network model while maintaining considerable recognition accuracy. Therefore, two experiments
with different recognition requirements in SOC are designed to evaluate the compression performance,
respectively, the 3-class and 10-class recognitions. For the 3-class SOC experiment, three kinds of
vehicle targets (T72, BMP2, BTR70) are used to evaluate the effectiveness of compressed deep network
design. As for the 10-class SOC experiment, all the ten types of vehicle targets are used to evaluate the
applicability to complex multi-classification problem. To meet the requirement of SOC experiment, the
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image sets with same serial number and different depression angle are selected as the training and
testing sets, as listed in Table 1.

 !"#$%&'

()$ *+,$ *(-). *-/+#$  012%2

$!2 *-(3. /) (3$

Figure 7. Experiment samples of 10 targets: optical images (top) and SAR images (bottom).

Table 1. Training and Testing Images for the SOC Experimental Setup.

Train Test

Class Serial No. Depression Quantity Depression Quantity

T72 132 17◦ 232 15◦ 196
BMP2 9563 17◦ 233 15◦ 196
BTR70 C71 17◦ 233 15◦ 195

BRDM2 E71 17◦ 298 15◦ 274
ZIL131 E12 17◦ 299 15◦ 274

2S1 B01 17◦ 299 15◦ 274
BTR60 7532 17◦ 256 15◦ 195

D7 3015 17◦ 299 15◦ 274
T62 A51 17◦ 299 15◦ 196

ZSU23/4 D08 17◦ 299 15◦ 274

In our paper, we adopt central sampling since the target located in the center of the image contains
most important information while peripheral region of the image contain little information. So we centrally
sample several 88× 88 patches from the original image, which is illustrated in Figure 8. We find out this
preprocessing will accelerate the training and reduce computation without accuracy loss.

Figure 8. Illustration of central sampling.
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3.2. Squeezed Network

Figure 9 shows architectures of the original network and squeezed network. The squeezed
network has only 18% parameters of the original network without accuracy loss. The squeezing
method reduces the number of multiplication by 5.7×.

Figure 9. Illustration of original network and squeezed network.

The two plots in Figure 10 show the training time of squeezed network and original network
when they are implemented in CPU and GPU respectively. In each plot, both squeezed network and
original network can achieve 98% accuracy after enough training time. However, compared to original
network, squeezed network can get to the same accuracy level with much shorter time. This time
reduction is critical for real time image processing. The detailed comparison of training time and
inference time are drawn in Tables 2 and 3. In training and inference process, the squeezed network
is 4× and 2× faster than original network in CPU and GPU respectively. The inference process of
compressed network is 2–4 times faster than the original network. This means the compressed network
can calculate the result label for a image much faster and achieve the realtime response. Moreover,
we can even retrain a newer and more suitable network with new image data in a specific problem
rather than using the unchanged original network, as the retraining process costs only a few seconds.

Figure 10. Training time of original network and squeezed network in CPU and GPU.
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Table 2. Training time of squeezed network and original network in CPU and GPU.

CPU Training (min) GPU Training (s)

Accuracy Level Squeezed Network Original Network Squeezed Network Original Network

80% accuracy 4.3 10.6 3.3 4.5
90% accuracy 7.5 33.5 4.4 11.2
95% accuracy 14.1 72.2 7.4 17.6
98% accuracy 41.7 165.6 19.2 36.8

Table 3. Single sample inference time with squeezed network and original network in CPU and GPU.

CPU Training (s) GPU Training (ms)

Squeezed Network Original Network Squeezed Network Original Network

Time cost 0.24 1.16 2.09 4.83

3.3. Speed Up of Fast Algorithm in Pruned Convolutional Layers

During iterative squeezing, the network becomes more and more sensitive to squeezing and
pruning. When we end up the squeezing process, we find out that only small-scale redundancies exist
in conv3 and conv4 layers which have 80% parameters of the squeezed network. 84% parameters
and 78% parameters can be pruned in conv3 and conv4 layers respectively without accuracy loss.
Then the fast algorithm is adopted to fully exploit the sparsity of pruned weights and activation
input, thus further reducing the number of multiplication by 3× and 3.8× in conv3 and conv4 layers.
Combined with squeezing, we can reduce the number of multiplication by nearly 15×.

When applying our fast computation algorithm, we need to spend extra time creating dictionary
to store non-zero value of activation input. Here, Figure 11 shows the time ratio of creating dictionary
and multiplication in conv3 and conv4 layers. The ratio of creating dictionary is very small and
often negligible. Besides, the computation speed up of our fast algorithm is showed in Figure 12.
Fast algorithm gives another speed up by 2.9× and 3.5× in conv3 and conv4 layers.

Figure 11. Time ratio of creating dictionary and multiplication.

Figure 12. Speed up of fast algorithm in conv3 and conv4 layers.
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3.4. Compression Result and Confusion Matrix

After squeezing and pruning the network, we do the experiments of weight sharing,
quantization and Huffman coding. In weight sharing, we find 16 or 32 centroid are enough in
each layer because our squeezed network only has 150 K parameters and pruning leaves many zero
value in squeezed conv3 and conv4 layers. Figure 13 shows how accuracy drops with fewer bits per
weight in each layer.

Figure 13. Accuracy loss of different number of centroid in each layer.

The details of our compression statistics are shown in Table 4. Huffman coding can give an extra
compression but the effect is small. The result shows that compressed network will be able to fit in an
on-chip SRAM and have modest bandwidth requirement.

Table 4. Compression statistics in SOC 3-class experiment. S: squeezing, P: pruning, Q: quantization,
H: huffman coding

Layers #Weights Weights Size #Weights (S + P) Compress Rate (S + P) Weights Bits (Q) Weights Size (S + P + Q + H) Compress Rate

Conv1 0.6 K 2 KB 0.3 K 2.0× 4 0.2 KB 10.0×
Conv2 40.8 K 159 KB 7.2 K 5.7× 4 3.5 KB 45.4×
Conv3 183.6 K 717 KB 24.2 K 7.6× 5 17.6 KB 40.7×
Conv4 691.2 K 2.63 MB 101.1 K 6.8× 4 63 KB 42.7×
Conv5 73.7 K 287 KB 15.5 K 4.6× 5 9.5 KB 30.2×

Fc1 13.8 K 54 KB 6.9 K 2.0× 5 4.2 KB 12.9×
Total 1 M 3.82 MB 155.2 K 6.4× 98 KB 39.9×

Table 5 shows the confusion matrix of the original network and compressed network. Each row
in the confusion matrix denotes the actual target class and each column represents the class predicted
by two networks. The accuracies of original network and compressed network are both around 98%.
Normally, the recognition performance will be degraded when the deep networks are simplified and
compressed. The identical recognition results come from two aspects. First, the experiment is a relative
simple 3-class recognition, the compressed networks may reach the accuracy as good as the original
one. Second, it depends on our compression strategy, namely, maintaining the accuracy. We choose the
proper compression rate to balance the accuracy and network size, and will stop keeping compress the
networks before the accuracy drops. So our compression method does not harm the performance of
neural network for SAR ATR.

Table 5. 3-class recognition accuracy comparison of original network and compressed network.

Class T72 BMP2 BTR70 Total

Original 0.978 0.986 0.985 0.983
Compressed 0.978 0.986 0.985 0.983

Difference 0.000 0.000 0.000 0.000
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We also test the compression effect in the same neural network model with MSTAR benchmark
data set which contains ten different categories. The details of our compression statistics and accuracy
comparison are shown in Tables 6 and 7. Although the 6-layer neural network is enough or even
redundant for the 3-classification task discussed above and achieve 40× compression rate, this model
is relatively too shallow to get a high original accuracy and compression rate. Overall, we can only get
a 10× compression rate and the accuracy of compressed network is only 91.5%, which is 0.5% lower
than the original one. With a same neural network, when doing easy classification task, it will become
relatively redundant and can be compressed more significantly. However, when the classification is
complex such as the 10-classification task here, this network seems rather shallow and can’t even get a
satisfying classification accuracy, not to mention compressing this slim network.

Table 6. Compression statistics in 10-class recognition experiment. S: squeezing, P: pruning, Q: quantization,
H: huffman coding.

Layers #Weights Weights Size #Weights (S + P) Compress Rate (S + P) Weights Bits (Q) Weights Size (S + P + Q + H) Compress Rate (S + P + Q + H)

Conv1 0.6 K 2 KB 0.6 K 1.0× 6 0.4 KB 5.0×
Conv2 40.8 K 159 KB 28.8 K 1.4× 5 17 KB 9.3×
Conv3 183.6 K 717 KB 105.6 K 1.7× 5 64 KB 11.2×
Conv4 691.2 K 2.63 MB 457.6 K 1.5× 5 279 KB 9.6×
Conv5 73.7 K 287 KB 44.9 K 1.6× 5 27 KB 10.6×

Fc1 46 K 180 KB 34.5 K 1.3× 6 25 KB 7.2×
Total 1.035 M 3.94 MB 672 K 1.5× 412 KB 9.8×

Table 7. 10-class recognition accuracy comparison of original network and compressed network.

Class 2S1 BMP2 BRDM2 BTR70 BTR60 D7 T62 T72 ZIL131 ZSU23/4 Total

Original 0.901 0.912 0.843 0.969 0.923 0.974 0.904 0.923 0.916 0.948 0.915
Compressed 0.897 0.867 0.846 0.969 0.902 0.970 0.897 0.943 0.919 0.937 0.920

Difference 0.004 0.045 −0.003 0.00 0.021 0.004 0.007 −0.020 −0.003 0.011 0.005

4. Conclusions and Future Work

Inspired by the recent compression and fast computation methods for deep neural network,
we address the problem of usage of convolutional neural network for SAR-ATR in mobile applications
such as unmanned aerial vehicle (UAV). Since the redundancy in our network is not very significant,
we use pruning to quantify our squeezing ratio rather than trial and error to avoid great accuracy
loss. Moreover, we provide a new idea of fast computation for pruned network which can reduce the
number of multiplication by 3× and save the training time by 3×. Finally, we combine squeezing,
deep compression and our fast computation algorithm to compress the weight storage by 40× and
reduce the number of multiplication by 15× without loss of accuracy. The compressed network still
achieves 98% accuracy of three-class classification but requires significant less memory storage and
training time, which facilitate its usage in resource-constrained environment.

We plan to extend our work in the following directions. First, we expect that writing a CUDA code
of our fast algorithm for pruned network and then comparing the training speed of our CUDA code
with Caffe original network model and tensorflow original network model. Second, since the memory
storage of our squeezed and deep compressed network is only 100 KB, we expect that we can store
all the weights in register memory or shared memory in GPU which will speed up the I/O process.
Finally, we expect that combining these two optimizations will reduce the training time even further.

Author Contributions: F.Z., Q.Y. and X.S. conceived and supervised this study. H.C. designed and implemented
the compressed network framework. H.C. and B.T. analyzed the results and wrote the paper.

Funding: This research was funded by the National Natural Science Foundation of China under Grant No.
61871413, Grant No. 61801015 and Grant No. 61501018.

Acknowledgments: We gratefully acknowledge Yingbing Liu (Mater candidate at Beijing University of Chemical
Technology) for the invaluable contribution in the experimental work.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2018, 10, 1618 14 of 15

Abbreviations

The following abbreviations are used in this manuscript:

SAR Synthetic Aperture Radar
ATR Automatic Target Recognition
CNN Convolutional Neural Network
CSR Compressed Sparse Row
CSC Compressed Sparse Column
GPU Graphics Processing Unit
UAV Unmanned Aerial Vehicle
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